Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis.

نویسندگان

  • Bo Duan
  • Yi-Zhi Wang
  • Tao Yang
  • Xiang-Ping Chu
  • Ye Yu
  • Yu Huang
  • Hui Cao
  • Jillian Hansen
  • Roger P Simon
  • Michael X Zhu
  • Zhi-Gang Xiong
  • Tian-Le Xu
چکیده

Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca(2+) overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine-ASIC interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable acid-sensing ion channels.

Acidosis is a common feature of neurological conditions including brain ischemia, epileptic seizures, and neurotrauma. Activation of Ca(2+)-permeable acid-sensing ion channels (ASIC1a) is involved in acidosis-mediated ischemic brain injury. Zn(2+) is a divalent cation concentrated in nerve terminals in various brain regions, and is released into the extracellular space during excitatory stimula...

متن کامل

Extracellular Zinc Protects Against Acidosis-Induced Injury of Cells Expressing Ca -Permeable Acid-Sensing Ion Channels

Acidosis is a common feature of neurological conditions including brain ischemia, epileptic seizures, and neurotrauma. Activation of Ca -permeable acid-sensing ion channels (ASIC1a) is involved in acidosis-mediated ischemic brain injury. Zn is a divalent cation concentrated in nerve terminals in various brain regions, and is released into the extracellular space during excitatory stimulation. O...

متن کامل

Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a.

Acid-sensing ion channel (ASIC) 1a subunit is expressed in synapses of central neurons where it contributes to synaptic plasticity. However, whether these channels can conduct Ca(2+) and thereby raise the cytosolic Ca(2+) concentration, [Ca(2+)](c), and possibly alter neuronal physiology has been uncertain. We found that extracellular acidosis opened ASIC1a channels, which provided a pathway fo...

متن کامل

Tissue acidosis induces neuronal necroptosis via ASIC1a channel independent of its ionic conduction

Acidotoxicity is common among neurological disorders, such as ischemic stroke. Traditionally, Ca(2+) influx via homomeric acid-sensing ion channel 1a (ASIC1a) was considered to be the leading cause of ischemic acidotoxicity. Here we show that extracellular protons trigger a novel form of neuronal necroptosis via ASIC1a, but independent of its ion-conducting function. We identified serine/threon...

متن کامل

Acid-sensing ion channels interact with and inhibit BK K+ channels.

Acid-sensing ion channels (ASICs) are neuronal non-voltage-gated cation channels that are activated when extracellular pH falls. They contribute to sensory function and nociception in the peripheral nervous system, and in the brain they contribute to synaptic plasticity and fear responses. Some of the physiologic consequences of disrupting ASIC genes in mice suggested that ASIC channels might m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 6  شماره 

صفحات  -

تاریخ انتشار 2011